

Division of Engineering Programs Page 1 of 6

EGC221: Digital Logic Lab

Experiment #6

Hierarchical Logic Circuits Using Intel Quartus Prime

Student’s Name: Reg. no.:

Student’s Name: Reg. no.:

Semester: Spring 2021 Date: 10 March 2021

Assessment:

Assessment Point Weight Grade

Methodology and correctness of results

Discussion of results

Participation

Assessment Points’ Grade:

Comments:

EGC221: Digital Logic Lab – Lab Report Experiment # 6

Division of Engineering Programs Page 2 of 6

Experiment #6:

Hierarchical Logic Circuit Implementation

Objectives:

The objectives of this experiment are to:

1. implement (and simulate) a 2 x 1 Multiplexer using logic gates,
2. create a (block) symbol of the 2 x 1 Multiplexer, and
3. use block symbols (a hierarchical approach) of the 2 x 1 to implement (and

simulate) an 8 x 1 Multiplexer.

Procedure:

Use Intel’s Quartus Prime Schematic to solve the following exercises.

Exercise 1:
In this section, a new Quartus® Prime project will be created to design an 8 x 1
Multiplexer circuit, the top-level module. Follow the steps shown in part I of this
tutorial to create a new project using New Project Wizard in Quartus® Prime.

Choose “MUX_8x1” as the name for both the project and the top-level entity. It is
important to notice that the name of the top-level entity must match the entity name in
the design file.

We will start by designing a 2 x 1 Multiplexer using schematic editor. A Multiplexer
uses a control input to select a single data input (from several choices) to be routed
to the output of the circuit. If the control SEL is low, then output Y = I0; else,Y = I1.

Table 1. Truth table for a 2 x 1 Mux.

SEL Y

0 I0

1 I1

Figure 1 illustrates the block diagram of a 2 x 1 Multiplexer. Design its internal circuit
using basic AND and OR gates. Be sure to save as “MUX_2x1” and Set as Top-
Level Entity under the Projects pull down menu.

Figure 1. Block diagram of 2 x 1 MUX

(a) Use Quartus Prime Schematic to provide the 2 x 1 Multiplexer circuit diagram

I0

 Y

I1

 SEL

EGC221: Digital Logic Lab – Lab Report Experiment # 6

Division of Engineering Programs Page 3 of 6

[Insert circuit diagram here]

 Figure 2. Quartus Prime circuit diagram of 2 x 1 MUX

(b) Use Quartus Prime Schematic to provide functional verification.

[Insert functional verification timing diagram here]

Figure 3. Quartus Prime functional simulation of 2 x 1 MUX
Exercise 2:
Create a block symbol to represent the above file:

Click inside the mux_2x1.bdf to make sure this is the active window.

Click File -> Create/Update -> Create Symbol Files for Current File.

EGC221: Digital Logic Lab – Lab Report Experiment # 6

Division of Engineering Programs Page 4 of 6

Exercise 3:
Create a new schematic diagram file:

 Save this file as mux_8x1.bdf

An 8 X 1 Mux has the following truth table.

Table 2. Truth table for an 8 x 1 Mux.

S2 S1 S0 Z

0 0 0 I0

0 0 1 I1

0 1 0 I2

0 1 1 I3

1 0 0 I4

1 0 1 I5

1 1 0 I6

1 1 1 I7

Using the Symbol Tool, and under Project you will find your new symbol. Using 2 X 1
Mux’s, create the 8 x 1 MUX circuit in Quartus Prime.

Click Project -> Set as Top Level Entity

[Insert circuit diagram here]

 Figure 4. Quartus Prime circuit diagram of 8 x 1 MUX

Use Quartus Prime Schematic to provide functional and timing verifications.

EGC221: Digital Logic Lab – Lab Report Experiment # 6

Division of Engineering Programs Page 5 of 6

[Insert functional verification timing diagram here]

[Insert timing verification timing diagram here]

Figure 5. Quartus Prime simulations of 8 x 1 MUX symbol.
(Functional is shown on top, and timing below)

Download and verify a working 8 x 1 MUX

EGC221: Digital Logic Lab – Lab Report Experiment # 6

Division of Engineering Programs Page 6 of 6

Conclusions:

